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Bounds for zeros of the Laguerre polynomials
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Abstract

We establish new inequalities on the extreme zeros of the Laguerre polynomials which are

uniform in all the parameters involved.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this note, we establish explicit bounds, uniform in k and a; on the extreme zeros

of the Laguerre polynomials L
ðaÞ
k ðxÞ: For our purposes, it will be convenient to define

them as a nonzero polynomial solution of

xy00 ¼ ðx � a� 1Þy0 � ky: ð1Þ

A well-known upper bound for the largest zero of L
ðaÞ
k ðxÞ; provided jajX1

4
; a4� 1;

is

xkoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k þ 2aþ 2

p
� 6�1=3ð4k þ 2aþ 2Þ�1=6

i11Þ2; ð2Þ
where i1 is the smallest zero of the Airy function [11], and, as Szegö pointed out, the

constant 6�1=3i11 ¼ 1:85575y; cannot be replaced by a smaller one. As a matter of
fact (not as well known as it should be) the last claim is true only if a is fixed. The
best currently known inequality for the least zero belongs to Ismail and Li [6]. They

proved that for a4� 1; all the zeros of L
ðaÞ
k ðxÞ are in the interval

2k þ a� 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðk � 1Þðk þ a� 1Þ cos2 p

k þ 1

r
: ð3Þ
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Surprisingly enough, it seems that the general asymptotic of the extreme zeros
(uniform in a) is still unknown. Some related results for a varying with k can be
found in [1,2,5]. Here we use a technique suggested in [4,8] to prove the following
sharper inequalities.

Theorem 1. Let x1 and xk be the least and the largest zeros of L
ðaÞ
k ðxÞ; respectively. For

kX7; aX8; the following inequalities hold:

x14s � r þ ðs � rÞ2=3

2r1=3
; ð4Þ

xkos þ r þ ðs þ rÞ2=3

2r1=3
; ð5Þ

where

s ¼ 2k þ aþ 1; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ ð2k � 1Þð2aþ 2Þ

q
:

More precisely, all the zeros of L
ðaÞ
k ðxÞ are confined between the only two real roots of

the following equation:

ðx2 � 2sx þ b2 � 1Þ3 � 4sx3 þ 9s2x2 þ ðb2 � 1Þðb2 � 1� 6sxÞ ¼ 0; ð6Þ
where b ¼ aþ 2:

It looks plausible that, up to the factor 1
2
; Theorem 1 gives the correct value of the

second term of the corresponding asymptotics.

2. Proofs

A real entire function fðxÞ is in the Laguerre–Polya class L–P if it has a
representation of the form

fðxÞ ¼ cxme�ax2þbx
Yo
k¼1

1þ x

xk

� �
e�x=xk ðopNÞ;

where c; b; xk are real, aX0; m is a nonnegative integer and
P

x�2
k oN: Our main

tool will be the following inequality valid for any fAL–P [7,9,10],

Vmðf ðxÞÞ ¼
Xm

j¼�m

ð�1Þmþj f ðm�jÞðxÞf ðmþjÞðxÞ
ðm � jÞ!ðm þ jÞ! X0; m ¼ 0; 1;y : ð7Þ

We will use m ¼ 2 and set

V ¼ 12V2ðyÞ ¼ 3y002 � 4y0y000 þ yyð4Þ:

Notice that in our case, the positivity (and a plausible connection with the potential

theory) can be seen directly by V ¼
P

iajðx � xiÞ�2ðx � xjÞ�2; where x1; x2;y are

the zeros of y [3].
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In the sequel, we deal with the function t ¼ tðxÞ ¼ y0=y; and set b; r; and s as in
Theorem 1 to simplify some expressions. We also assume x40: Using differential
equation (1) recursively to express the higher derivatives in V through y and y0 we get

2x3

y2
V ¼ At2 þ 2Bt þ C; ð8Þ

where

A ¼ �2xðx2 � 2sx þ ðb � 1Þðb þ 3ÞÞ;

B ¼ x3 � ð2s þ b � 1Þx2 þ ð2bs � 3s þ ðb � 1Þðb þ 3ÞÞx þ b � b3;

C ¼ ðb � s � 1Þðx2 � 2sx � x þ b2 þ bÞ:

Observe that A is positive only for x in the interval ðxa
m; xa

MÞ;

xa
m;M ¼ 2k þ aþ 172

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ak þ k � a� 1

p
:

Let also xc
moxc

M be the roots of C:
For the discriminant of the equation At þ 2Bt þ C ¼ 0; in t we get

DðxÞ ¼B2 � AC

¼ðx2 � 2sx þ b2 � 1Þ3 � 4sx3 þ 9s2x2 þ ðb2 � 1Þðb2 � 1� 6sxÞ ð9Þ

that is exactly expression (6).
We split the proof into several lemmas. We used Mathematica for symbolic

calculations.

Lemma 1. The equation DðxÞ ¼ 0 has exactly two real roots x	
mox	

M ; provided kX2

and a4� 1: Moreover, xc
moxa

mox	
mox	

Moxa
Moxc

M ; if kX7; aX8:

Proof. The discriminant surface of (9) (i.e. the domain of parameters where the
equation has multiple zeros) is given by the equation

ð2k2 þ 2ak þ 2k � a � 1Þða þ 2Þ2


 ðkðk � 1Þðk þ a þ 1Þðk þ a þ 2Þða þ 1Þða þ 3ÞÞ3 ¼ 0:

Thus, for k41 and a4� 1; the number of real roots does not depend on a and k:
Therefore, it is enough to check the claim for k ¼ 2; a ¼ 0; i.e. for the equation

x6 � 30x5 þ 309x4 � 1200x3 þ 1152x2 � 360x þ 36 ¼ 0;

what is straightforward. Since C=k � A=x ¼ x þ a � 1; the zeros of A=x ¼ 0 are
confined between the zeros of C ¼ 0; for aX1: To prove xa

mox	
mox	

Moxa
M ; we

consider the resultant of D and A=2x in x;

ResultðD;A=2xÞ ¼ ð1þ aÞ2ð1� a� a2 þ a3 þ 7s2 � as2Þ2:

Since it does not vanish for kX7; aX8; it will be enough to check the claim for
k ¼ 7; a ¼ 8: As in this case both Dðxa

mÞ;Dðxa
MÞ40; we are done. &
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Lemma 2. For kX7; aX8; all the zeros of L
ðaÞ
k ðxÞ are confined in ðx	

m; x	
MÞ; between

the only two real roots of the equation DðxÞ ¼ 0:

Proof. We prove x	
mox1; the inequality xkox	

M is similar. Let t1 ¼ t1ðxÞ be the

solution of At2 þ 2Bt þ C ¼ 0; given by t1 ¼ �Bþ
ffiffiffiffiffiffiffiffiffiffiffiffi
B2�AC

p

A
: Then for aX1; t1 is a

continuous function on ð0; x	
m� and limx-0þ t1 ¼ �N: The first claim follows from

B2 � ðB2 � ACÞ ¼ AC40; on rewriting t1 as �C

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffi
B2�AC

p : The second one is trivial. On

the other hand, by V1ðyÞ ¼ �y2t0ðxÞX0; tðxÞ is a continuous decreasing function on

½0; x1Þ; tending to �N for x-x
ð�Þ
1 : It does not intersect the solutions of At2 þ

2Bt þ C ¼ 0; in particularly t1: By the previous lemma this is possible only if
x	

mox1: &

Proof of Theorem 1. By the previous lemma it is enough to show that inequalities (4)
and (5) hold for xm and xM ; respectively. Since

s � r þ ðs � rÞ2=3

2r1=3
osos þ r þ ðs þ rÞ2=3

2r1=3
;

and

DðsÞ ¼ �ðs2 � b2 þ 1Þððs2 � b2Þ2 � 3s2 � b2Þo0;

to prove (4) we just check

D s7r þ ðs7rÞ2=3

2r1=3

 !
40:

Calculations yield

64r6

q4
D s � r þ ðs � rÞ2=3

2r1=3

 !

¼ q8 � 32q5r � 60q6r4=3 � 32q2r2 þ 96q3r4=3

þ 240q4r8=3 þ 144r10=3 þ 192qr11=3;

where q ¼ ðs � rÞ1=3: Since, as it is easy to check, r24s þ r4q3; and so

q5roqr11=3; q6r4=3oq4r8=3; q2r2or10=3;

we convince that the above expression is positive. Hence (4) follows.

The proof of (5) is similar using r24s þ r; we omit the details. &

3. Final remarks

It is worth noticing that one can use as well the corresponding three-term
recurrence instead of differential equation (1). Patrick [10] used (7) to obtain the
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Turan-type inequalities, which have essentially the same form

Umðf ðxÞÞ ¼
Xm

j¼�m

ð�1Þj pk�jðxÞpkþjðxÞ
ðm � jÞ!ðm þ jÞ!X0; m ¼ 0; 1;y;

and hold for polynomials and entire functions having generating function f ðxÞ ¼P
N

i¼0 pi
zi

i!; of the Laguerre–Polya class. This is the case for the Laguerre polynomials

as they have a generating function of the formXN
i¼0

L
ðaÞ
i ðxÞ

L
ðaÞ
i ð0Þ

zi

i!
¼ Jað2

ffiffiffiffiffi
xz

p
Þ

ðxzÞa=2
Gðaþ 1Þez; a4� 1:

With m ¼ 2; it gives practically the same bounds as Theorem 1.
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