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Abstract

We establish new inequalities on the extreme zeros of the Laguerre polynomials which are
uniform in all the parameters involved.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this note, we establish explicit bounds, uniform in k£ and «, on the extreme zeros
of the Laguerre polynomials Ll@ (x). For our purposes, it will be convenient to define
them as a nonzero polynomial solution of

xy' = (x—a— 1) —ky. (1)

A well-known upper bound for the largest zero of L,(f’) (x), provided |o| 2%, o> —1,
is

xp < (VAk 4 20+ 2 — 6P (4k + 2004 2)7%5y)?, (2)

where 7; is the smallest zero of the Airy function [11], and, as Szegé pointed out, the
constant 6~'/3;; = 1.85575..., cannot be replaced by a smaller one. As a matter of
fact (not as well known as it should be) the last claim is true only if « is fixed. The
best currently known inequality for the least zero belongs to Ismail and Li [6]. They

proved that for > — 1, all the zeros of L;:‘> (x) are in the interval

: 3)
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Surprisingly enough, it seems that the general asymptotic of the extreme zeros
(uniform in o) is still unknown. Some related results for o varying with k can be
found in [1,2,5]. Here we use a technique suggested in [4,8] to prove the following
sharper inequalities.

Theorem 1. Let x| and xy be the least and the largest zeros ofL,(j) (x), respectively. For
k=7, a=8, the following inequalities hold.

(S o 1")2/3
X1>s—r+ W7 (4)
(s+r)?*?
Xk<S +r+ W, (5)
where

s=2%k ot 1, r= 42+ (2K - 1)(20+2).

More precisely, all the zeros of L,(C“)(x) are confined between the only two real roots of
the following equation:

(X2 = 25+ B> — 1)* — 4sx® + 992x% + (B> — 1)(> — 1 — 65x) = 0, (6)
where b = o + 2.

It looks plausible that, up to the factor %7 Theorem 1 gives the correct value of the
second term of the corresponding asymptotics.

2. Proofs

A real entire function ¢(x) is in the Laguerre—Polya class ¥-2 if it has a
representation of the form

w
_ m —ox+fx .X') —X/Xk
x) =cx"e 1+—)e o< o),
e (s (<)
where ¢, f§, x;, are real, >0, m is a nonnegative integer and > x,;2< c0. Our main
tool will be the following inequality valid for any f'e -2 [7,9,10],

m m+jf(m_j) xf(mH) x
Valf () = 3 (=" —(j))!(m +;>!)

j=m

>0, m=0,1,... . (7)

We will use m = 2 and set

V=12Va(y) = 3y — 4" + yppY.
Notice that in our case, the positivity (and a plausible connection with the potential
theory) can be seen directly by V' =3, (x — x) 2 (x — xj)_z, where xj,x, ... are
the zeros of y [3].



L Krasikov | Journal of Approximation Theory 121 (2003) 287-291 289

In the sequel, we deal with the function ¢ = #(x) = )/ /y, and set b, r, and s as in
Theorem 1 to simplify some expressions. We also assume x>0. Using differential
equation (1) recursively to express the higher derivatives in V' through y and y’ we get

2x3

-V =Af + 2Bt + C, (8)
yz

where
A= -2x(x* = 2sx+ (b —1)(b +3)),
B=x—(2s+b—1x*+(2bs—3s+(b—1)(b+3))x+b— b,
C=(b—s5s—1)(x* —2sx — x +b>+b).

Observe that A is positive only for x in the interval (x%,x9,),

Xy =2k + o+ 142V +ak +k — o — 1.
Let also x{, <x9, be the roots of C.
For the discriminant of the equation At + 2Bt + C =0, in ¢ we get
A(x) =B* — AC
=(x% = 2sx + B> — 1) — 4sx® + 952x% + (B> — 1)(b* — 1 — 65x) 9)
that is exactly expression (6).

We split the proof into several lemmas. We used Mathematica for symbolic
calculations.

Lemma 1. The equation A(x) =0 has exactly two real roots x;,, <x%,, provided k=2

C a * * a C o
and o> — 1. Moreover, X, <X, <X} <X3; <X4; <X, if k=7, a=8.

Proof. The discriminant surface of (9) (i.e. the domain of parameters where the
equation has multiple zeros) is given by the equation
(2% + 2ak + 2k —a —1)(a +2)*
x (k(k = 1)(k+a+1)(k+a+2)(a+1)(a+3)) =0.

Thus, for k>1 and a> — 1, the number of real roots does not depend on « and k.
Therefore, it is enough to check the claim for k = 2, a =0, i.e. for the equation

x® —30x° + 309x* — 1200x° + 1152x% — 360x + 36 = 0,

what is straightforward. Since C/k — A/x =x+a— 1, the zeros of 4/x =0 are
confined between the zeros of C =0, for a>1. To prove xi <x;, <xj,<x9,, we
consider the resultant of 4 and 4/2x in x,

Result(4,4/2x) = (1 + 0)*(1 — o — o + o> + 75° — as®)?.

Since it does not vanish for k=7, «>8, it will be enough to check the claim for
k=7, «=8. As in this case both A(x%), 4(x%,)>0, we are done. [J
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Lemma 2. For k=7, 0=8, all the zeros of L,(C“) (x) are confined in (x},,x%,), between
the only two real roots of the equation A(x) = 0.

Proof. We prove x}, <xj, the inequality x; <x%, is similar. Let ¢#; = #,(x) be the
solution of A#>+2Bt+ C =0, given by #; = =B=YF=AC Then for a>1, ¢ is a
continuous function on (0, x},] and lim,_,+ #; = —oo. The first claim follows from

D 2 o .. _C . ..
B> — (B*— AC) = AC>0, on rewriting #; as FvEic The second one is trivial. On
the other hand, by V;(y) = —y*#(x)>0, #(x) is a continuous decreasing function on

[0,x;), tending to —oo for x—»ng). It does not intersect the solutions of Af* +
2Bt + C =0, in particularly z;. By the previous lemma this is possible only if
X, <xp. 0O

Proof of Theorem 1. By the previous lemma it is enough to show that inequalities (4)
and (5) hold for x,, and x,,, respectively. Since

(s — ;’)2/3 (s+ ;’)2/3

s—r+ 2173 <s<S+r+ VR

and
A(s) = —(s7 = B>+ 1)((s* — b*)* — 35> — b?) <0,

to prove (4) we just check

(Sir)2/3
A(Sir+w >0.

Calculations yield

64r° (s—r)z/3
7A<S—V+W

=q¢* —32¢°r — 6Oc]"r4/3 —32¢° + 96q3r4/3
+ 2404%57 + 1441195 1 192¢7"1 3,
where ¢ = (s — r)"/>. Since, as it is easy to check, r2>s5 + r>¢, and so
11/3 10/3

q5r<qr q6r4/3<q4r8/3, q2r2<r

we convince that the above expression is positive. Hence (4) follows.
The proof of (5) is similar using r*>>s + r, we omit the details. [

3. Final remarks

It is worth noticing that one can use as well the corresponding three-term
recurrence instead of differential equation (1). Patrick [10] used (7) to obtain the
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Turan-type inequalities, which have essentially the same form

m

U/ (9) = 32 (1 TR0, m=o.t,

and hold for polynomials and entire functions having generating function f(x) =

S ilo pi ﬁ, of the Laguerre—Polya class. This is the case for the Laguerre polynomials
as they have a generating function of the form

0 a i ; 2 —
Z Li xz_ Ja xz)l"(oc—i—l)ez, o> — 1.
(oc o/2
i=0 1 (XZ)
With m = 2, it gives practically the same bounds as Theorem 1.
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