# Bounds for zeros of the Laguerre polynomials 

Ilia Krasikov<br>Brunel University, Department of Mathematical Sciences, Uxbridge UB8 3PH, UK

Received 29 January 2002; accepted 29 January 2003
Communicated by Mourad Ismail


#### Abstract

We establish new inequalities on the extreme zeros of the Laguerre polynomials which are uniform in all the parameters involved. © 2003 Elsevier Science (USA). All rights reserved.


## 1. Introduction

In this note, we establish explicit bounds, uniform in $k$ and $\alpha$, on the extreme zeros of the Laguerre polynomials $L_{k}^{(\alpha)}(x)$. For our purposes, it will be convenient to define them as a nonzero polynomial solution of

$$
\begin{equation*}
x y^{\prime \prime}=(x-\alpha-1) y^{\prime}-k y . \tag{1}
\end{equation*}
$$

A well-known upper bound for the largest zero of $L_{k}^{(\alpha)}(x)$, provided $|\alpha| \geqslant \frac{1}{4}, \alpha>-1$, is

$$
\begin{equation*}
x_{k}<\left(\sqrt{4 k+2 \alpha+2}-6^{-1 / 3}(4 k+2 \alpha+2)^{-1 / 6} i_{11}\right)^{2} \tag{2}
\end{equation*}
$$

where $i_{1}$ is the smallest zero of the Airy function [11], and, as Szegö pointed out, the constant $6^{-1 / 3} i_{11}=1.85575 \ldots$, cannot be replaced by a smaller one. As a matter of fact (not as well known as it should be) the last claim is true only if $\alpha$ is fixed. The best currently known inequality for the least zero belongs to Ismail and Li [6]. They proved that for $\alpha>-1$, all the zeros of $L_{k}^{(\alpha)}(x)$ are in the interval

$$
\begin{equation*}
2 k+\alpha-2 \pm \sqrt{1+4(k-1)(k+\alpha-1) \cos ^{2} \frac{\pi}{k+1}} \tag{3}
\end{equation*}
$$

[^0]Surprisingly enough, it seems that the general asymptotic of the extreme zeros (uniform in $\alpha$ ) is still unknown. Some related results for $\alpha$ varying with $k$ can be found in $[1,2,5]$. Here we use a technique suggested in $[4,8]$ to prove the following sharper inequalities.

Theorem 1. Let $x_{1}$ and $x_{k}$ be the least and the largest zeros of $L_{k}^{(\alpha)}(x)$, respectively. For $k \geqslant 7, \alpha \geqslant 8$, the following inequalities hold:

$$
\begin{align*}
& x_{1}>s-r+\frac{(s-r)^{2 / 3}}{2 r^{1 / 3}}  \tag{4}\\
& x_{k}<s+r+\frac{(s+r)^{2 / 3}}{2 r^{1 / 3}} \tag{5}
\end{align*}
$$

where

$$
s=2 k+\alpha+1, \quad r=\sqrt{4 k^{2}+(2 k-1)(2 \alpha+2)}
$$

More precisely, all the zeros of $L_{k}^{(\alpha)}(x)$ are confined between the only two real roots of the following equation:

$$
\begin{equation*}
\left(x^{2}-2 s x+b^{2}-1\right)^{3}-4 s x^{3}+9 s^{2} x^{2}+\left(b^{2}-1\right)\left(b^{2}-1-6 s x\right)=0 \tag{6}
\end{equation*}
$$

where $b=\alpha+2$.
It looks plausible that, up to the factor $\frac{1}{2}$, Theorem 1 gives the correct value of the second term of the corresponding asymptotics.

## 2. Proofs

A real entire function $\phi(x)$ is in the Laguerre-Polya class $\mathscr{L}-\mathscr{P}$ if it has a representation of the form

$$
\phi(x)=c x^{m} e^{-\alpha x^{2}+\beta x} \prod_{k=1}^{\omega}\left(1+\frac{x}{x_{k}}\right) e^{-x / x_{k}} \quad(\omega \leqslant \infty),
$$

where $c, \beta, x_{k}$ are real, $\alpha \geqslant 0, m$ is a nonnegative integer and $\sum x_{k}^{-2}<\infty$. Our main tool will be the following inequality valid for any $f \in \mathscr{L}-\mathscr{P}$ [7,9,10],

$$
\begin{equation*}
V_{m}(f(x))=\sum_{j=-m}^{m}(-1)^{m+j} \frac{f^{(m-j)}(x) f^{(m+j)}(x)}{(m-j)!(m+j)!} \geqslant 0, \quad m=0,1, \ldots . \tag{7}
\end{equation*}
$$

We will use $m=2$ and set

$$
V=12 V_{2}(y)=3 y^{\prime \prime 2}-4 y^{\prime} y^{\prime \prime \prime}+y y^{(4)}
$$

Notice that in our case, the positivity (and a plausible connection with the potential theory) can be seen directly by $V=\sum_{i \neq j}\left(x-x_{i}\right)^{-2}\left(x-x_{j}\right)^{-2}$, where $x_{1}, x_{2}, \ldots$ are the zeros of $y$ [3].

In the sequel, we deal with the function $t=t(x)=y^{\prime} / y$, and set $b, r$, and $s$ as in Theorem 1 to simplify some expressions. We also assume $x>0$. Using differential equation (1) recursively to express the higher derivatives in $V$ through $y$ and $y^{\prime}$ we get

$$
\begin{equation*}
\frac{2 x^{3}}{y^{2}} V=A t^{2}+2 B t+C \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=-2 x\left(x^{2}-2 s x+(b-1)(b+3)\right) \\
& B=x^{3}-(2 s+b-1) x^{2}+(2 b s-3 s+(b-1)(b+3)) x+b-b^{3} \\
& C=(b-s-1)\left(x^{2}-2 s x-x+b^{2}+b\right)
\end{aligned}
$$

Observe that $A$ is positive only for $x$ in the interval $\left(x_{m}^{a}, x_{M}^{a}\right)$,

$$
x_{m, M}^{a}=2 k+\alpha+1 \pm 2 \sqrt{k^{2}+\alpha k+k-\alpha-1}
$$

Let also $x_{m}^{c}<x_{M}^{c}$ be the roots of $C$.
For the discriminant of the equation $A t+2 B t+C=0$, in $t$ we get

$$
\begin{align*}
\Delta(x) & =B^{2}-A C \\
& =\left(x^{2}-2 s x+b^{2}-1\right)^{3}-4 s x^{3}+9 s^{2} x^{2}+\left(b^{2}-1\right)\left(b^{2}-1-6 s x\right) \tag{9}
\end{align*}
$$

that is exactly expression (6).
We split the proof into several lemmas. We used Mathematica for symbolic calculations.

Lemma 1. The equation $\Delta(x)=0$ has exactly two real roots $x_{m}^{*}<x_{M}^{*}$, provided $k \geqslant 2$ and $\alpha>-1$. Moreover, $x_{m}^{c}<x_{m}^{a}<x_{m}^{*}<x_{M}^{*}<x_{M}^{a}<x_{M}^{c}$, if $k \geqslant 7, \alpha \geqslant 8$.

Proof. The discriminant surface of (9) (i.e. the domain of parameters where the equation has multiple zeros) is given by the equation

$$
\begin{aligned}
& \left(2 k^{2}+2 a k+2 k-a-1\right)(a+2)^{2} \\
& \quad \times(k(k-1)(k+a+1)(k+a+2)(a+1)(a+3))^{3}=0 .
\end{aligned}
$$

Thus, for $k>1$ and $a>-1$, the number of real roots does not depend on $a$ and $k$. Therefore, it is enough to check the claim for $k=2, a=0$, i.e. for the equation

$$
x^{6}-30 x^{5}+309 x^{4}-1200 x^{3}+1152 x^{2}-360 x+36=0
$$

what is straightforward. Since $C / k-A / x=x+a-1$, the zeros of $A / x=0$ are confined between the zeros of $C=0$, for $\alpha \geqslant 1$. To prove $x_{m}^{a}<x_{m}^{*}<x_{M}^{*}<x_{M}^{a}$, we consider the resultant of $\Delta$ and $A / 2 x$ in $x$,

$$
\operatorname{Result}(\Delta, A / 2 x)=(1+\alpha)^{2}\left(1-\alpha-\alpha^{2}+\alpha^{3}+7 s^{2}-\alpha s^{2}\right)^{2}
$$

Since it does not vanish for $k \geqslant 7, \alpha \geqslant 8$, it will be enough to check the claim for $k=7, \alpha=8$. As in this case both $\Delta\left(x_{m}^{a}\right), \Delta\left(x_{M}^{a}\right)>0$, we are done.

Lemma 2. For $k \geqslant 7, \alpha \geqslant 8$, all the zeros of $L_{k}^{(\alpha)}(x)$ are confined in $\left(x_{m}^{*}, x_{M}^{*}\right)$, between the only two real roots of the equation $\Delta(x)=0$.

Proof. We prove $x_{m}^{*}<x_{1}$, the inequality $x_{k}<x_{M}^{*}$ is similar. Let $t_{1}=t_{1}(x)$ be the solution of $A t^{2}+2 B t+C=0$, given by $t_{1}=\frac{-B+\sqrt{B^{2}-A C}}{A}$. Then for $\alpha \geqslant 1, t_{1}$ is a continuous function on $\left(0, x_{m}^{*}\right]$ and $\lim _{x \rightarrow 0^{+}} t_{1}=-\infty$. The first claim follows from $B^{2}-\left(B^{2}-A C\right)=A C>0$, on rewriting $t_{1}$ as $\frac{-C}{B+\sqrt{B^{2}-A C}}$. The second one is trivial. On the other hand, by $V_{1}(y)=-y^{2} t^{\prime}(x) \geqslant 0, t(x)$ is a continuous decreasing function on $\left[0, x_{1}\right)$, tending to $-\infty$ for $x \rightarrow x_{1}^{(-)}$. It does not intersect the solutions of $A t^{2}+$ $2 B t+C=0$, in particularly $t_{1}$. By the previous lemma this is possible only if $x_{m}^{*}<x_{1}$.

Proof of Theorem 1. By the previous lemma it is enough to show that inequalities (4) and (5) hold for $x_{m}$ and $x_{M}$, respectively. Since

$$
s-r+\frac{(s-r)^{2 / 3}}{2 r^{1 / 3}}<s<s+r+\frac{(s+r)^{2 / 3}}{2 r^{1 / 3}}
$$

and

$$
\Delta(s)=-\left(s^{2}-b^{2}+1\right)\left(\left(s^{2}-b^{2}\right)^{2}-3 s^{2}-b^{2}\right)<0
$$

to prove (4) we just check

$$
\Delta\left(s \pm r+\frac{(s \pm r)^{2 / 3}}{2 r^{1 / 3}}\right)>0
$$

Calculations yield

$$
\begin{aligned}
& \frac{64 r^{6}}{q^{4}} \Delta\left(s-r+\frac{(s-r)^{2 / 3}}{2 r^{1 / 3}}\right) \\
& \quad=q^{8}-32 q^{5} r-60 q^{6} r^{4 / 3}-32 q^{2} r^{2}+96 q^{3} r^{4 / 3} \\
& \quad+240 q^{4} r^{8 / 3}+144 r^{10 / 3}+192 q r^{11 / 3}
\end{aligned}
$$

where $q=(s-r)^{1 / 3}$. Since, as it is easy to check, $r^{2}>s+r>q^{3}$, and so

$$
q^{5} r<q r^{11 / 3}, \quad q^{6} r^{4 / 3}<q^{4} r^{8 / 3}, \quad q^{2} r^{2}<r^{10 / 3}
$$

we convince that the above expression is positive. Hence (4) follows.
The proof of (5) is similar using $r^{2}>s+r$, we omit the details.

## 3. Final remarks

It is worth noticing that one can use as well the corresponding three-term recurrence instead of differential equation (1). Patrick [10] used (7) to obtain the

Turan-type inequalities, which have essentially the same form

$$
U_{m}(f(x))=\sum_{j=-m}^{m}(-1)^{j} \frac{p_{k-j}(x) p_{k+j}(x)}{(m-j)!(m+j)!} \geqslant 0, \quad m=0,1, \ldots
$$

and hold for polynomials and entire functions having generating function $f(x)=$ $\sum_{i=0}^{\infty} p_{i} \frac{z^{i}}{i!}$, of the Laguerre-Polya class. This is the case for the Laguerre polynomials as they have a generating function of the form

$$
\sum_{i=0}^{\infty} \frac{L_{i}^{(\alpha)}(x)}{L_{i}^{(\alpha)}(0)} \frac{z^{i}}{i!}=\frac{J_{\alpha}(2 \sqrt{x z})}{(x z)^{\alpha / 2}} \Gamma(\alpha+1) e^{z}, \quad \alpha>-1
$$

With $m=2$, it gives practically the same bounds as Theorem 1 .

## References

[1] L.-C. Chen, M.E.H. Ismail, On asymptotics of Jacobi polymomials, SIAM J. Math. Anal. 22 (1991) 1442-1449.
[2] H. Dette, W.J. Studden, Some new asymptotic properties for zeros of Jacobi, Laguerre and Hermite polynomials, Constr. Approx. 11 (1995) 227-238.
[3] K. Dilcher, K.B. Stolarsky, On a class of nonlinear differential operators acting on polynomials, J. Math. Anal. Appl. 170 (1992) 382-400.
[4] W.H. Foster, I. Krasikov, Explicit bounds for Hermite polynomials in the oscillatory region, London Math. Soc. J. Comp. Math. 3 (2000) 307-314.
[5] W. Gawronski, Strong asymptotics and the asymptotic zero distributions of Laguerre $L_{n}^{(a n+\alpha)}$ and Hermite $H_{n}^{(a n+\alpha)}$ polynomials, Analysis 13 (1993) 29-67.
[6] M.E.H. Ismail, X. Li, Bounds on the extreme zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 115 (1992) 131-140.
[7] J.L.W.V. Jensen, Recherches sur la theorie des equations, Acta Math. 36 (1913) 181-195.
[8] I. Krasikov, Nonnegative quadratic forms and bounds on orthogonal polynomials, J. Approx. Theory 111 (2001) 31-49.
[9] M.L. Patrick, Some inequalities concerning Jacobi Polynomials, SIAM J. Math. Anal. 2 (1971) 213-220.
[10] M.L. Patrick, Extension of inequalities of the Laguerre and Turan type, Pacific J. Math. 44 (1973) 675-682.
[11] G. Szegö, Orthogonal Polynomials, Vol. 23, 4th ed., Amer. Math. Soc. Colloq. Publ., Providence, RI, 1975.


[^0]:    E-mail address: mastiik@brunel.ac.uk.

